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Online Pattern Classification With Multiple Neural
Network Systems: An Experimental Study

Chee Peng Lim and Robert F. Harrison

Abstract—In this paper, an empirical study of the development
and application of a committee of neural networks on online
pattern classification tasks is presented. A multiple classifier
framework is designed by adopting an Adaptive Resonance
Theory-based (ART) autonomously learning neural network
as the building block. A number of algorithms for combining
outputs from multiple neural classifiers are considered, and two
benchmark data sets have been used to evaluate the applicability
of the proposed system. Different learning strategies coupling
offline and online learning approaches, as well as different input
pattern representation schemes, including the “ensemble” and
“modular” methods, have been examined experimentally. Benefits
and shortcomings of each approach are systematically analyzed
and discussed. The results are comparable, and in some cases
superior, with those from other classification algorithms. The
experiments demonstrate the potentials of the proposed multiple
neural network systems in offering an alternative to handle online
pattern classification tasks in possibly nonstationary environ-
ments.

Index Terms—Adaptive Resonance Theory, benchmark studies,
decision combination algorithms, multiple neural network sys-
tems, online learning.

I. INTRODUCTION

I N PATTERN classification, the idea of using a committee of
classifiers in solving a particular problem is not a new one.

As early as in the eighteenth century, the Condorcet Jury model
was designed to study the conditions under which a democracy
model as a whole is more effective than any of its constituent
members [1]. In general, members of a committee of classi-
fiers can be statistical-based, syntactical-based, neural-network-
based, or hybrid classifiers, or even a mixture of these classi-
fiers. The primary objective of combining outputs from more
than one classifier is to achieve better generalization than would
be achieved by any of the constituent classifiers and, hence, to
obtain better performance. The use of a single classifier system
hinges on the assumption that the system is able to capture and
to process all the input features satisfactorily regardless of what
the features might be. In cases where the above assumption fails
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to hold true, e.g., the input features might consist of a variety of
syntactic primitives, linguistic variables, continuous, discrete,
or nominal attributes, presenting all these features to one clas-
sifier for it to make a decision is often difficult and can re-
sult in poor performance. Furthermore, concatenating all the
features into a high-dimensional input vector will unduly in-
duce the problem known as the “curse-of-dimensionality” [2].
Hence, many researchers have proposed the application of mul-
tiple classifier systems and the combination of results using
some information fusion algorithm to reach an integrated con-
sensus. In general, a committee of classifiers can be used in two
ways: 1) select the output from the “best” (e.g., lowest error rate,
highest posterior probability) of the constituent classifiers for
each input; 2) combine the outputs from all the constituent clas-
sifiers. In this paper, we are concerned with the latter approach
when using a committee of neural-network-based classifiers.

Methods for combining multiple networks can largely be cat-
egorized into two, i.e., the ensemble and modular approaches
[3], [4]. In the ensemble approach, each network is trained using
the same inputs such that each network provides a solution to
the same task. Outputs from these redundant networks are com-
bined to reach an integrated result. On the contrary, in the mod-
ular approach, a task is first decomposed into several subtasks
and a specialist network is then trained using the inputs per-
taining to the corresponding subtask. Subsolution outputs from
each of the specialist networks are combined so that the com-
plete solution to the task is obtained. Given a particular problem,
both the ensemble and modular multiple network systems can
coexist at different levels of the problem solution. A detailed re-
view on multiple neural network systems can found in [3].

There are a number of situations where an ensemble of neural
networks is applicable. For instance, an ensemble of networks
can be used for selecting a subset of input features that best rep-
resents a particular problem [5]. In general, the main motivation
for using an ensemble of neural networks is to mitigate the limi-
tations of each constituent network. Since each network is prone
to making errors from one realization to another, their outputs
can be combined in such a way that the effect of these errors,
in terms of ensemble bias and variance [6], is minimized. It has
been shown that ensemble averaging is effective in reducing the
variance, rather than bias, of errors from the networks [3].

Bagging and boosting [7]–[9] are recent methods for
improving the predictive power of an ensemble of learning
systems, particularly in pattern classification problems. Bag-
ging generates an ensemble of classifiers, each learned from
a training set formed by resampling (with replacement) the
original data samples. On the other hand, boosting uses all
data samples in each repetition, and maintains a weight for
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each sample in the training set that reflects its importance. By
adjusting these weights, boosting forces a classifier to focus
on different samples and thus leads to different results. Both
bagging and boosting apply voting to aggregate predictions.
Bagging assigns the same vote to each constituent classifier,
while boosting gives different voting strengths to different
classifiers according to their accuracy rates. While bagging
primarily focuses on variance reduction of the ensemble
classifiers, boosting acts to reduce both bias and variance. An
empirical comparison [10] has shown that boosting is generally
better than bagging, but not uniformly better for all the data
sets used.

In the combination of modular networks, the concept of
“divide and conquer” is usually adopted whereby a compli-
cated task is decomposed into a number of subtasks with
reduced complexity, and a specialist network is assigned to
handle each subtask. The constituent networks, which can
be composed by different learning systems, can exploit their
specialist capabilities, and achieve results that would not be
possible in a single network. For example, modular systems
coupling neural networks with hidden Markov models have
been proposed for speech recognition [11]. The mixture-of
experts [12] and hierarchical mixtures-of-experts [13] have
been used to partition the input space into several subspaces,
and simple models are used to learn information contained
in each subspace. It is argued that such data partitioning is
more effective than training on the whole input data space. A
gating network is used to output a set of scalar coefficients that
serve to weight the contribution of the various experts [12],
[13]. Different methods for “hybridization and specialization”
of neural networks is presented in [14]. The idea is to use
modularity to extend the capabilities of single networks for
forming a system that is easier to train and to understand. For
example, a combination of feedforward and recurrent networks
is proposed such that the relative strengths of both networks for
handling spatial and temporal tasks, respectively, are exploited.

The organization of this paper is as follows. In Section II, mo-
tivations for developing online learning systems along with a re-
view on some incremental learning networks are presented. The
building block of the proposed multiple-neural-network system,
i.e., an autonomously learning model based on the supervised
Adaptive Resonance Theory (ART) [15] network, is then de-
scribed. Rationales and derivations of three algorithms used to
combine predictions from multiple networks are presented in
Section III. In Section IV, two benchmark pattern classifica-
tion problems are employed to assess applicability of the pro-
posed system. Different input pattern representation schemes
(ensemble and modular) and learning strategies (offline and on-
line) are studied systematically. The results are analyzed and
compared with other existing algorithms. Implications of the re-
sults are also discussed, and conclusions are drawn in Section V.

II. ONLINE LEARNING NEURAL NETWORK SYSTEMS

Although many characteristics of neural networks have been
studied, one domain that receives little attention, and yet is im-
portant to “intelligent” learning systems, is the ability to absorb

knowledge continuously and autonomously without corrupting
or forgetting previously acquired knowledge. This ability is nec-
essary, for instance, in handling online learning problems in
nonstationary environments. In certain situations, offline, batch
learning is sometimes not a viable option. This may be be-
cause the data sets are too large or, more importantly, the data
may evolve with time. It is this very reason that triggers the
needs of autonomous, online learning systems. Specifically, the
issue of stability-plasticity dilemma [15] is addressed, i.e., how a
learning system is able to protect useful historical data from cor-
ruption (stability) while simultaneously learning new data (plas-
ticity). This dilemma has also been addressed as the sequential
learning problem [16], [17]. If a multilayer feedforward network
with standard back-propagation is used to learn the training data
sequentially, a phenomenon known as catastrophic forgetting
may occur in which new knowledge will overwrite existing in-
formation stored in the network [17]. As a result, the learning
system is neither stable nor usefully plastic.

To overcome the stability-plasticity dilemma, researchers
have proposed a number of incremental learning algorithms
with adaptive network structures. Instead of fixing the network
size a priori, the idea is to recruit an appropriate number of
nodes incrementally as data arrive so that a parsimonious
network structure can be formulated. On the other hand, one
can first use a large, oversized network. As learning proceeds,
the network structure is adjusted by removing redundant nodes
using some information-theoretic analysis [18]. According to
[19, Ch. 15] online learning networks can largely be divided
into three categories:

1) growing networks, which start with no nodes and gradu-
ally add new nodes when input samples are presented;

2) pruning networks, which start with a large number of
nodes and then delete them subsequently;

3) growing and pruning networks, which add and delete
nodes simultaneously to reach an appropriate network
size.

Some incremental learning networks that are related to our work
are discussed in the following section, and a detailed review of
structurally adaptive networks can be found in [19]. Theoretical
analysis, especially within the Bayesian framework, of online
learning methods in neural networks can be found in [20].

On the issue of catastrophic forgetting, French [21] argues
that forgetting is a direct consequence of distributed representa-
tion of information in a standard feedforward back-propagation
network. One way to maintain generalization while reducing
catastrophic forgetting is to use “semi-distributed” representa-
tions. An algorithm is proposed in [21] in which the network
is allowed to develop semi-distributed representations by using
a factor to compute the correlation between weight vectors en-
coded by the hidden nodes. However, this approach might re-
sult in a loss of information, and might affect generalization of
the resulting network. Instead, adaptive versions of back-prop-
agation that are suitable for on-learning have been introduced
[22], [23]. Methods within the statistical physics framework
have been adopted to analyze dynamics of online learning mul-
tilayer neural networks. Training samples are repetitively sam-
pled from a fixed data set, and the correlations between network
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parameters and training samples are examined. The proposed
approaches provide useful insights to monitor the evolution of
the error rate and to design optimal learning parameters.

The cascade-correlation Algorithm [24] is another learning
algorithm for the construction of architecturally dynamic
multilayer feedforward networks. The learning procedure starts
with a minimal network and incrementally builds a suitable
cascaded structure with as many layers as the number of added
hidden nodes. Many researchers have investigated and modified
the Cascade-Correlation Algorithm to suit various application
domains [25]–[27]. In addition, researchers have proposed
algorithms for growing or shrinking the radial basis function
(RBF) networks. A resource allocating network (RAN) for
function interpolation is introduced in [28]. The system is
essentially a growing Gaussian RBF network which processes
information sequentially and adapts the network weights using
the least mean squares algorithm. If novelty is detected, i.e.,
the network prediction is unacceptably inaccurate with regard
to certain criteria [28], then a new basis function located on
the input is added. In [29], an enhanced learning algorithm
based on Kalman filter is proposed for RAN, and work on the
enhanced RAN algorithm has been described in [30] and [31].

In an attempt specifically to overcome the stability-plasticity
dilemma, a family of competitive learning networks known as
ART has been proposed [15], [32]–[37]. The ART models have
revealed promising characteristics for building autonomous
learning systems. In general, the growth criterion of many
neural networks relies upon a similarity measure (for instance,
a distance metric) between the input pattern and learned
exemplars to select the best-matched prototype. An arbitrary
threshold is then applied to decide whether or not to add a
new node. ART has a similar growing methodology. However,
one distinct difference is that an ART network has a two-stage
hypothesis selection and test process. On presentation of a new
input pattern, a feedforward pass is initiated to select the most
similar prototype according to a competitive selection process.
The winning prototype, nonetheless, has to undergo a feedback
pass to perform a test against a vigilance threshold. If the
vigilance criterion is not satisfied, then a new cycle of search
(selection and test) ensues until the criterion is satisfied by an
existing prototype, or the creation of a new node to code the
input pattern. It is the inclusion of this feedback mechanism that
assists in forming a stable, and yet plastic knowledge structure
in ART networks. This characteristic, thus, differentiates ART
from other incremental neural network models.

A. Fuzzy ARTMAP (FAM)

A supervised ART network known as FAM [35] which real-
izes a synthesis of ART and fuzzy logic has been introduced.
Fig. 1 depicts a schematic diagram of the FAM network. It con-
sists of two fuzzy ART [33] modules, ARTand ART , linked
by a map field, . The ART (ART ) module has two main
layers of nodes: ( ) is the input layer; and ( ) is a
dynamic layer where each node encodes a prototype pattern of
a cluster of input patterns, and the number of nodes can be in-
creased when necessary. ( ) is a normalization layer which

Fig. 1. FAM network.

performs complement-coding [33]–[35] of the input patterns to
avoid the category proliferation problem.

During supervised learning, ARTreceives a stream of input
pattern vectors, , whereas ARTreceives the corresponding
target-class vectors, . In general, ART consists of an inde-
pendent Fuzzy ART module to self-organize the target vectors.
However, in one-from- classification (i.e., each input pattern
belongs to only one of the possible output classes), ART
can be replaced by a single layer containingnodes. Then, the

-bit teaching stimulus can be coded to have unit value corre-
sponding to the target category and zero for all others.

The learning algorithm of FAM is similar to the sequential
leader clustering algorithm [38]. However, FAM does not
directly associate input patterns at ARTto target patterns at
ART . Rather, input patterns are first classified into prototypical
category clusters before being linked with their target outputs
via a map field. At each input pattern presentation, this map
field establishes a permanent link between the winning
category prototype and the target output in. This association
is used, during test, to recall a prediction when an input pattern
is presented to ART.

B. Probabilistic Neural Network (PNN)

The PNN [39] is a neural network model that implements the
Bayes’ theorem in its learning methodology. It learns instan-
taneously in one-pass through the data samples and is able to
form complex decision boundaries that approximate asymptoti-
cally the Bayes optimal limits. In addition, the decision bound-
aries can be modified online when new data is available without
having to retrain the network. The key feature of the PNN is
its ability to estimate the probability density functions (pdfs)
based on data samples by using the Parzen-window technique
[40]. Fig. 2 depicts a schematic diagram of the PNN for bi-
nary classification tasks (class or ). The PNN consists of
four layers of nodes: the input layer, pattern layer, summation
layer, and output layer. Nodes in the pattern layer are organized



238 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 2, MAY 2003

Fig. 2. Probabilistic neural network.

in groups corresponding to different target classes. The pattern
nodes belonging to the same output are then linked to a sum-
mation node dedicated to that particular target class. During op-
eration, the input pattern,, is first fanned-out to the pattern
layer where each pattern node computes a distance measure be-
tween the input and the weight pattern represented by that node.
The distance measure (e.g., dot-product) is then shunt through
a Parzen kernel. The summation nodes sum outputs from the
Parzen kernels. These outputs correspond to estimates of the
pdfs of the input pattern with respect to each target class, i.e.,

, ).

C. Probabilistic FAM (PFAM)

One disadvantage of the PNN is that it encodes every input
pattern as a new node in the network, thus, increases the net-
work complexity and computational cost if large or unbounded
data sets are used. Nevertheless, this problem can be alleviated
by using a clustering technique such as FAM. Our studies have
found that there is a close similarity in the network topology be-
tween FAM and the PNN, as shown in Fig. 3. Notice that the
and layers correspond to the input and pattern layers whereas
the map field layer ( ) corresponds to the summation layer.
In one-from- classification, each node in is permanently
associated with only one node in , which is then linked to
the target output in . Thus, the map field nodes can be used
to sum outputs from all the nodes corresponding to a partic-
ular target class, taking the role of the PNN summation nodes.
In view of the suitability of the incremental learning property
and the similarity of the network topology between FAM and
the PNN, a novel hybrid network, based on the integration of
FAM and the PNN, has been proposed for online classification
and probability estimation tasks, and is called PFAM [41].

The online PFAM algorithm is divided into two phases.
First, the FAM clustering procedure is used for classifying the
input patterns into different categories (learning phase). Subse-
quently, the PNN probability estimation procedure is used to
predict a target output (prediction phase). The advantage of this
integration is twofold: 1) a probabilistic interpretation of output

Fig. 3. Structure of the PFAM network.

classes is established which enables the application of Bayes,
risk-weighted, classification in FAM; 2) the number of pattern
nodes in the PNN is reduced by the clustering procedure of
FAM. The above description provides a conceptual framework
for incorporating FAM and the PNN into a unified, hybrid
system, and the rationale behind their integration. In practice,
several modifications are necessary to allow effective combina-
tion of both the networks, and to increase generalization ability
of the resulting system. These include procedures to estimate
kernel centers and widths. Explanation on all these procedures
can be found in [41].

III. D ECISION COMBINATION IN MULTIPLE CLASSIFIER

SYSTEMS (MCSs)

In addition to the motivations for combining multiple net-
works stated in Section I, there is another reason for the use of
multiple ART-based classifiers (and most incremental learning
systems), i.e., to minimize the effect of data ordering in online
learning. In incremental learning systems such as ART, the for-
mation of prototypes is affected by the sequence of input sample
presentations. This could lead to different predictions of target
classes, and thus different accuracy scores for each network re-
alization. Thus, good long-term performance of the network de-
pends on a good initial formation of cluster prototypes. The data
ordering effect is further exacerbated if the prototypes are to be
established autonomously, online, because in this case the input
samples are presented only once, and in a fixed order. One way
to mitigate this problem is to train a pool of networks offline,
each with a different ordering of input samples. During the pre-
diction phase, the results from several networks can be com-
bined to give an overall prediction. It is, therefore, worthwhile
to investigate how to integrate decisions from multiple PFAM
networks so that a robust and high performance classification
system could be formed.

Here, three decision combination algorithms are discussed to
form a PFAM-based MCS, as shown in Fig. 4. The first one is a
simple majority-voting scheme [42] where the target class that
receives the highest number of votes is selected as the final pre-
diction. The second method is based on the Bayesian theorem
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Fig. 4. Schematic diagram of an MCS withN independent classifier modules.
Outputs from all classifiers are combined using a suitable decision combination
algorithm to give an overall prediction.

[42], [43] that is commonly employed in evidence gathering and
uncertainty reasoning. The third one is the behavior-knowledge
space (BKS) approach proposed in [44].

A. Majority Voting

Suppose there are target classes where each class is repre-
sented by , , the task of a classifier
is to assign the input sample,, to one of the ( ) classes,
with the ( )th class denoting that the classifier rejects.
The most common method to combine the outputs is by ma-
jority voting. If there are classifiers denoted by ,
the problem is to produce a combined result, ,

, from all predictions, ,
. A binary function [42] can be used to represent

the number of votes, i.e.,

if

otherwise.
(1)

Then, sum the votes from all classifiers for each

(2)

and the combined result, , can be determined by

if max

and

otherwise
(3)

where is a user-defined threshold that controls the
confidence in the final decision [42].

B. Bayesian Approach

The voting strategy is solely based on the predicted outcomes
produced from all classifiers, where each classifier is treated
equally without considering its errors. A more reasonable
approach is to take into account the predictive accuracy of
each classifier. The predictions from highly accurate classifiers
should be given more weight than those from the less accurate
ones. This is the rationale behind the use of the Bayesian
approach to combine decisions from multiple classifiers. The
Bayesian algorithm presented below has been proposed in
[42], but the basic idea has been used previously for evidence
propagation and uncertainty reasoning in intelligent systems
[43].

Given a data set containing samples, all predictions (cor-
rect and incorrect ones) of theth classifier, , is recorded in
its confusion matrix constructed as follows:

...
...

.. .
...

(4)

where , , indicates the
number of samples belonging to, but assigned to classby

. The total number of samples encountered byis

(5)

and the number of samples belonging tois

(6)

i.e., summation through row. The number of samples that is
assigned to classby is

(7)

i.e., summation through column. This confusion matrix
provides information regarding a classifier’s ability to classify
accurately samples from a particular target class. In the event

(classifier predicts that belongs to ), the truth
that really comes from class is associated with a factor of
uncertainty. By utilizing information stored in the confusion
matrix, the uncertainty of proposition given
can be computed according to

(8)
From the viewpoint of uncertainty reasoning, the confusion

matrix of a classifier can be regarded as a collection of evidence
supporting different target classes, and (8) can be interpreted as
a set of belief functions, , on propositions that

[42]. The higher the belief function of a proposition is, the
more likely that it is true. With classifiers, there will be
confusion matrices and events,

. Each classifier expresses its belief functions [42] as

(9)

where denotes the common classification environment that
consists of all events. The problem now is how to integrate
the belief functions from classifiers into a combined set of
belief functions.

Bayesian formalism has been adopted to propagate and up-
date the belief functions in the Bayesian network [43]. The same
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idea has been used in [42] to combinesets of belief function.
Using Bayes’ theorem, (9) is expanded to

(10)

To simplify the combination of the belief functions, it is as-
sumed that the environment consists of -independent
events with mutually exclusive sets of target output. Thus,
the joint probability is reduced to

(11)

Using the Bayes’ rule

(12)

(11) becomes

(13)

By using (11) and (13), (10) becomes

(14)
To further simplify calculation of the combined belief func-

tion, the following estimate can be used [42]:

(15)

Fig. 5. Two–dimensional BKS.

where each ) can be computed from the
confusion matrix using (8) by replacingwith . Based on the
combined belief functions, the one with the highest estimate is
selected as the final outcome, i.e.,

if

and

otherwise.

(16)

Again, is a user-defined threshold to regulate
confidence associated with the final decision.

C. BKS Approach

One of the criticisms of the Bayesian approach is the assump-
tion that all classifiers must operate independently in order to
tackle the computation of the joint probabilities. This assump-
tion is unlikely to hold in many applications. To avoid using the
assumption, the BKS approach that concurrently records the de-
cisions of all classifiers on each input sample is proposed in [44].

A BKS is a -dimensional space in which each dimension
corresponds to the decision of one classifier. The intersection of
the decision from multiple classifiers occupies one unit of the
BKS, e.g., denotes a BKS
unit where each produces a prediction , . In
each BKS unit, there are partitions (cells) for accumulating
the number of samples actually belonging to. As an example,
suppose two classifiers are used to categorize the input samples
into target classes. Then a two-dimensional (2–D) BKS can
be formed, as shown in Fig. 5.

Each BKS unit, , is further divided into cells,
, where denotes the overall prediction

. The frequency of the number
of samples belonging to , is recorded in each

. When an input sample,, is presented, one
of the BKS units will become active (known as the focal unit)
after the decisions from all classifiers have been received.
In the above example, will be selected as the focal unit if

and . Then, the total number of samples
in the focal unit is computed

(17)

and the best representative class (i.e., the one that contains the
highest number of samples) is identified

where max (18)
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The decision rule for determining the final outcome is

if and

otherwise

(19)

where is a user-defined confidence threshold.
The BKS appears to be similar to the confusion matrix

used in the Bayesian approach. However, the Bayesian method
needs to compute the multiplication of evidence taken from
the confusion matrices to approximate the joint probability of

events when evaluating the combined belief function. This
step is avoided in the BKS approach, in which a final decision
is made by assigning the input sample directly to the class that
has accumulated the largest number of samples. The simplicity
of this BKS approach may not be detrimental; instead it
has provided a fast and effective way of combining multiple
predictions, as demonstrated in [44] for the classification of
unconstrained handwritten numerals.

IV. OFFLINE AND ONLINE PATTERN CLASSIFICATION

In the following experiments, two benchmark data sets were
used and a few practical operating strategies were envisaged to
allow the system to learn incrementally and to classify patterns
autonomously. These two benchmark problems have been
studied in [37] using single-channel FAM and multichannel
Fusion ARTMAP. Note that Fusion ARTMAP is an extension
of FAM that introduces a modularized technique for data fusion
and classification. Hence, the results in [37] can be compared
with those in the following experiments. In order to have a
fair comparison, the procedures in [37] have been followed
as closely as possible, e.g., network parameters, performance
indicators, number of training and test samples, number of
experimental runs. Unless otherwise stated, the PFAM network
parameters used throughout all experiments were: baseline
vigilance parameter, ; learning rate, (fast
learning); (conservative mode) [35]; overlapping
parameter, [41]. Note that the above parameters were
set to their “default” values, and no additional effort was spent
in fine-tuning these parameters. Indeed, it is our belief that a
good system should require as few user-specified parameters
as possible. Nevertheless, a system with some adjustable
parameters may allow users to regulate the system complexity,
e.g., offers a means to govern the coarseness or fineness
of the clusters to be formed in ARTMAP networks [34], [35].
Specifically, two different ways of input pattern representation
were experimented using the PFAM-based MCSs.

1) Ensemble Approach: where the input samples were used
in their original, concatenated form. In this approach, a number
of PFAM classifiers were first trained using different orderings
of the training set, and then tested on the test set. Predictions
from all classifiers were combined with the voting, Bayesian
and BKS methods to give an overall decision.

2) Modular Approach: where each input sample was di-
vided into groups of related attributes. During training, each
group of attributes extracted from a training sample was as-
signed to a PFAM classifier, and during test, the predictions

from all classifiers were combined using the three combination
methods to give a final decision.

A. Quadruped Mammals Data Set

This data set is an artificial domain first used to evaluate
CLASSIT, an unsupervised machine learning algorithm [45].
There are four types of mammals, namely cats, dogs, horses, and
giraffes. Each input sample is described by a set of eight com-
ponents: head, tail, neck, torso, and four legs; and each com-
ponent is further described by nine attributes: texture, height,
radius, three locations, and three axes. Hence, there are 72 at-
tributes per sample in total. The program for generating the data
samples can be obtained from [46].

1) Offline Learning With the Ensemble Approach:In [37],
fusion ARTMAP applied each of the eight components (head,
tail, neck, torso, and four legs—each with nine attributes) to a
different unsupervised ART network (modular approach), and
the results were concatenated to a global network to make a final
prediction. Two training sets comprising 100 and 1000 samples
were applied. The trained network was tested on 1000 samples.
The performance, averaged over three runs, was compared to an
ensemble approach by concatenating all 72 attributes to a single
FAM network.

Here, two experiments were conducted using the same
training and test set sizes as in [37]. In addition to averaging
the results of three runs, MCSs were formed to combine the
outcomes from these three runs. Table I lists the experimental
results together with the reported FAM results in [37].

A few observations can be made from Table I. The perfor-
mance of PFAM is inferior to that of FAM, which shows perfect
results in both experiments. The failure of PFAM to achieve the
same performance as FAM might be due to the small number
of prototype patterns being created in the system. The average
number of prototypes created in PFAM was, respectively, 5.7
for 100 training samples and 7.8 for 1000 training samples. No-
tice that PFAM (so as PNN) uses Parzen windows to estimate
the pdfs. Accuracy of the pdfs depends on the number of proto-
types, i.e., the larger the number of prototypes, the more accu-
rate the estimated pdfs become. Theoretically, the pdfs will con-
verge asymptotically to the actual underlying functions in the
limit as the number of prototypes increases [39], [40]. As can be
seen in Table I, performance of PFAM improved as the training
samples increased from 100 to 1000, in which case more pro-
totypes are created. In comparing performance between single
and multiple classifiers, MCSs were able to improve the results
of individual classifiers. This is true for all three decision com-
bination methods. From Table I, the Bayesian and BKS methods
show a better performance than the simple majority-voting rule.

2) Offline Learning With the Modular Approach:Three
MCSs were formed, each with eight modules of PFAM classi-
fiers. Each classifier was dedicated to handle one group of the
data components, i.e., head, tail, neck, torso, and four legs. All
the experiments were repeated three times. The average results
of individual classifiers are listed in Table II. The results of
Fusion ARTMAP in [37] and MCSs are shown in Table III.

Again, a committee of classifiers proves to be useful in
improving the performance of single classifiers. Perfect results
(100% accuracy) were obtained with the Bayesian and BKS
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TABLE I
RESULTS OFINDIVIDUAL AND MULTIPLE CLASSIFIERSFROM THE ENSEMBLE

APPROACHUSING THEQUADRUPEDMAMMALS DATA SET (THE FAM RESULTS

ARE ADAPTED FROM [37])

TABLE II
RESULTS OFINDIVIDUAL CLASSIFIERSFROM THE MODULAR APPROACH

USING THE QUADRUPED MAMMALS DATA SET

TABLE III
RESULTS OFMULTIPLE CLASSIFIERSFROM THE MODULAR APPROACH

USING THE QUADRUPED MAMMALS DATA SET

approaches for three runs on both cases of 100 and 1000
training samples. Notice that the MCS results listed in Table III
are equivalent to, if not better than, those of fusion ARTMAP.
Nevertheless, by increasing the training samples to 1000, all
classifiers were able to perform with perfect accuracy. When
individual classifiers are concerned, the ensemble approach
(Table I—FAM and PFAM) achieves better performance
than the modular approach (Table II). By reducing the input
dimension from 72 to 9, fewer prototypes were formed using
the modular approach (average numbers of prototypes were
4.2 and 6.1) during the experiments. As a result, the estimated
pdfs were less accurate compared to those formulated using
the ensemble approach, which in turn caused a lower classifi-
cation accuracy. This drawback, however, can be overcome by
combining the decisions from multiple classifiers (Table III).

3) Online Learning: In online learning, the system imitates
the condition of a human operating in a natural environment.
Each incoming datum is used as a training sample as well as a
test sample. The online learning cycle proceeds as follows: an
input pattern is presented to PFAM, and a prediction is made.
The prediction is compared with the target class to determine
its correctness or otherwise. This outcome constitutes the clas-
sification accuracy. Learning then ensues to associate the input
with its target class.

The modular approach with eight PFAM classifiers (each
with nine attributes) was compared with the ensemble approach
of a single PFAM classifier (72 attributes). Note that in online
learning, the voting, Bayesian and BKS procedures are not
applicable to combine the results from the ensemble approach.
This is because there is no differentiation between training

Fig. 6. A comparison of the online results between the individual classifiers
with the ensemble approach and the MCS with the modular approach. The error
bars indicate the standard deviations of the average results from three runs.

and test sets—all data samples were first tested and then
trained in a fixed order. Hence, knowledge established in all
classifiers would be the same since they are trained on the same
sequence of samples. In the modular approach, however, each
classifier is trained on only a group of attributes of the sample.
Therefore, MCSs can be formed to combine the predictions
from classifiers based on disparate attribute groups.

In this experiment, 1000 data samples were generated. To cal-
culate the online accuracy, a 100-sample window was applied,
e.g., accuracy at sample 200 was the percentage of correct pre-
dictions from trials 101–200. All the online results were aver-
aged across three runs. Fig. 6 depicts a comparison of the on-
line results between the ensemble and modular approaches. The
standard deviations of three runs are plotted as error bars to indi-
cate the spread of individual results across the averages. As can
be seen, the modular approach attained a performance superior
to that of the ensemble approach. Perfect results (100% accu-
racy) were achieved by the Bayesian and BKS methods after
encountering fewer than 200 input samples. This perfect per-
formance was maintained until the end of experiments in all
three attempts. Although voting exhibited inferior results to the
Bayesian and BKS methods, it still outperformed the ensemble
approach.

B. Landsat Satellite Images

This database comprises a small subsection (82100
pixels) of a scene from the original satellite images. Each
pixel covers an area of approximately 8080 meters on the
ground. One frame of the Landsat satellite imagery comprises
intensities of four spectral bands of the same scene. Two of the
spectra are in the visible region (corresponding approximately
to green and red regions), and two are in the (near) infrared
region. The Landsat satellite images database is also obtainable
from [46]. The database has been divided into a training set
of 4435 samples, and a test set of 2000 samples. Each sample
has 36 attributes (nine attributes for each of the four spectral
bands), and there are altogether six target classes.
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TABLE IV
CLASSIFICATION ACCURACY RATES, AS REPORTED IN[47], FROM VARIOUS

ALGORITHMS FOR THELANDSAT SATELLITE DATA SET

TABLE V
RESULTS OFSINGLE AND MULTIPLE CLASSIFIERSFROM THE ENSEMBLE

APPROACHUSING THE LANDSAT SATELLITE DATA SET (THE FAM RESULTS

ARE ADAPTED FROM [37])

This Landsat database serves as a more challenging bench-
mark problem compared with the quadruped mammal database
as it comprises real and noise-corrupted satellite images. Fur-
thermore, many classification algorithms have been evaluated
using this data as part of the Statlog Project [47]. There are a va-
riety of indicators presented in [47] for performance comparison
among various algorithms. Here, we only extracted the accu-
racy rates in [47], as listed in Table IV, for comparison purposes
with those from FAM and Fusion ARTMAP in [37]. Other indi-
cators such as memory storage, computational time, have been
excluded. Note that the “Default” accuracy rate in Table IV is
calculated by categorizing all the test samples as belonging to
the class that has the highest number of samples, i.e., the max-
imum a priori classification rule.

With the ensemble approach, each input sample to PFAM
consisted of a 36 dimensional vector which had been normalized
between zero and one. With the modular approach, the same
input sample was divided into four spectral bands, each com-
prising a nine-dimensional vector (again, normalized between
zero and one) corresponding to a different spectral band. All
training data were randomized to produce five differently or-
dered training sets, and the results were averaged across five
runs.

1) Offline Learning With the Ensemble Approach:Table V
shows the results of PFAM and the MCSs from our experiments
as well as those of FAM in [37]. In accordance with the ex-
periments reported in [37], two baseline vigilance values were
tested, i.e., a low value of to create coarse clusters of
input samples, and a high value of to create fine clus-
ters. Other network parameters were the same as those used in
the quadruped mammal experiments. A considerable improve-
ment in classification accuracy was achieved with with
the tradeoff being the increased numbers of prototypes created

TABLE VI
RESULTS OFINDIVIDUAL CLASSIFIERSFROM THE MODULAR APPROACH

USING THE LANDSAT SATELLIET DATA SET

TABLE VII
RESULTS OFMULTIPLE CLASSIFIERSFROM THE MODULAR APPROACH

USING THE LANDSAT SATELLIET DATA SET

by FAM and PFAM, which were about eightfold and sixfold,
respectively, compared to those created by . Note that
the -NN approach, which achieved the best accuracy of 90.6%
among all algorithms used in the Statlog Project, has to store
all 4435 training samples as prototypes [37]. Thus, in compar-
ison with -NN, FAM and PFAM (both with ) could
achieve a slightly lower accuracy (89% versus 90.6%) but with
a higher degree of code compression.

As might be expected, a committee of classifiers was able to
improve on the results of individual classifiers. In terms of per-
formance comparison, the BKS-based MCS achieved the best
results, i.e., 91.7% accuracy for and 94.5% accuracy
for . The voting and Bayesian MCSs also outperformed
FAM, PFAM, and many other algorithms in Table IV.

With , the performance of PFAM was relatively poor
compared with other methods. This may be accounted for by
the same phenomenon observed in the experiments using the
quadruped mammal data set, i.e., accuracy of the estimated pdfs
was directly affected by the number of prototypes. That is why
a substantial improvement could be achieved by PFAM with

, in which more than 500 prototypes were created.
2) Offline Learning With the Modular Approach:In addi-

tion to the concatenated input samples, a modular approach of
dividing the input sample attributes into the four corresponding
spectral bands has been tested. Table VI summarizes the average
results and the number of prototypes of five runs. The modular
approach proved to be a failure with this Landsat data set. As can
be seen from Table VI, not only were the classification results
exceptionally poor, but there was a proliferation of prototypes.
Even by raising to 0.9, the results were still significantly in-
ferior to those from the ensemble approach. Among the four
spectral bands, accuracy of the band 3 classifier was the worst
with the highest number of prototypes.

Table VII shows the results of the MCSs by combining the
outcomes from the four individual (band) classifiers. Generally,
classification accuracy improved with the voting, Bayesian or
BKS methods. In particular, the BKS approach produced an in-
crease of more than 30% in accuracy for both and
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compared to individual classifiers. The BKS results
are also comparable with those in Table IV.

Deficiency of the modular approach is also experienced with
the Fusion ARTMAP network. According to [37], the best per-
formance of Fusion ARTMAP was about 70%, and the same
prototype proliferation problem was observed. Failure of the
modular approach on this data set might be due to two factors:
interspectral dependency and the presence of noise in the satel-
lite images. By segmenting the attributes of different spectral
bands to different classifiers, interspectral information is lost.
Without the benefits of information from other spectra, noise in
the data is aggregated. For example, the “red” sensor is insen-
sitive to certain “green” frequencies, and it will produce very
irregular images associated with different output classes when
the region under scrutiny is mostly green [37]. This pitfall is
avoided in FAM when all sensor data are concatenated into one
input sample so that interspectral information can be utilized by
the classifier to form input features which are more consistent
with the target class. Thus, FAM is able to achieve good results
even with a reduced number of prototypes.

3) Offline Learning With Variable Confidence Threshold:In
binary classification problems, it is useful to apply the receiver
operating characteristics (ROC) curve to assess the tradeoff be-
tween false positive/false negative of a classifier, especially in
medical domain [48]. Indeed we have reported the use of ROC
and PFAM in medical applications [49]. In multiple-class prob-
lems, the ROC curve becomes less practical. Here, each decision
combination algorithm includes a confidence threshold to reg-
ulate the confidence associated with the predictions from mul-
tiple classifiers. This threshold, , can be manipulated
either to accept a classifier’s prediction if the combined confi-
dence level is higher than, or to reject the prediction otherwise.
Hence, the classifier’s reliability can be adjusted accordingly.
The following performance measures, as recommended in [42],
can be used to evaluate the effects ofon classification perfor-
mance:

Recognition Rate: Ratio of the number of correct classifica-
tions to the total number of samples (i.e., the accuracy index in
previous experiments).

Substitution Rate: Ratio of the number of incorrect classifi-
cations to the total number of samples.

Rejection Rate: Ratio of the number of rejected classifications
to the total number of samples.

Reliability Rate Reliability
Recognition

Rejection

The experimental results of the MCSs with the modular ap-
proach were re-evaluated using different threshold values. As
might be expected, trade-off between recognition and rejection
took place as was increased from zero to unity. In other words,
by manipulating the confidence threshold, the system designer
could adapt a classifier system to perform with high or low re-
liability to suit the problem under investigation. Furthermore,
manipulation of the confidence threshold provides an alterna-
tive means of comparing the performances of the three decision
combination schemes. Fig. 7 depicts a plot of the percentages of
the substitution rate against recognition rate, parameterized by

Fig. 7. Percentages of the substitution rate against recognition rate of the
MCSs, parameterized by varying confidence threshold. (a) Voting (� = 0:0).
(b) Voting (� = 0:9). (c) Bayesian (� = 0:0). (d) Bayesian (� = 0:9). (e)
BKS (� = 0:0). (f) BKS (� = 0:9).

the confidence threshold. The plot illustrates that by increasing
from zero to one, more and more input samples are being re-

jected as it becomes more difficult for the predicted output to
satisfy the confidence level. Both the recognition and substi-
tution rates gradually decrease to 0%. Notice that even in the
situation of low substitution rates, the BKS approach is able
to maintain a relatively high recognition rate (and high relia-
bility) compared with the Bayesian and voting methods. These
observations are true for both experiments using and

.
4) Dual-Mode Learning: In cases where there is a high cor-

relation and dependency between attributes of the input sam-
ples, segmenting these attributes into different classifiers offers
no benefits at all. As a result, online learning experiments with
modularized inputs, such as those conducted for the quadruped
mammal database, do not seem to be appropriate for the Landsat
database.

With the ensemble approach, online combination of decisions
across a committee of classifiers is unrealizable because data
arrive in a fixed order. It seems that MCSs are not applicable
for online learning with concatenated inputs. In practice, how-
ever, there is no reason why such MCSs cannot be employed
online, after an initial period of training. As a result, a strategy
is devised where an offline learning process is first conducted
to equip each individual classifier with a different “knowledge”
base before online learning is initiated. During offline learning,
different classifiers will establish different category prototypes,
thus predictions will be different when they are switched to on-
line learning even though the classifiers are now receiving in-
coming samples in the same order. The decision combination
schemes, once again, can be implemented to combine outcomes
from a variety of differently trained classifiers using concate-
nated samples. We call this strategydual-mode learning.
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Fig. 8. Overall classification accuracy rates against increasing number of input
samples from the individual classifiers as well as the voting, Bayesian and BKS
multiple classifier systems. (a)� = 0:0, (b) � = 0:9.

Two sets of dual-mode learning experiments were conducted
with and . Five classifiers were initially
trained using 1000 samples, each with a different ordering of
data, and then tested using the remaining samples. The classi-
fication accuracy was calculated with a 1000-sample moving
window as in the online learning experiments. Fig. 8 depicts the
overall accuracy rates against increasing number of input sam-
ples from the individual classifiers, as well as the MCSs. A few
observations can be made from the following results:

1) performance improves with a high vigilance value;
2) all three MCSs perform better than the individual classi-

fiers;
3) BKS approach performs the best, followed by the

Bayesian approach and then the voting method.

Nevertheless, with , both the Bayesian and voting
methods achieve virtually the same performance.

This dual-mode learning strategy also achieved results which
are comparable with the offline results (Table V). However, one

additional advantage here is that the system is able to learn on-
line and the learning process is on-going. The problems faced
in offline learning, such as a predefined network size and re-
training, are avoided. Decisions from multiple classifiers can
also be combined to produce a classification system with high
accuracy.

V. CONCLUSION

A committee of neural network classifiers has been studied
to tackle online pattern classification problems. The classifier
used, PFAM, is a hybrid system of FAM and the PNN. It is
an incremental adaptive system capable of online, supervised
learning and probability estimation. In the manifestation of
MCSs presented in this paper, an independent classifier module
is dedicated to handle a set of attributes (either concatenated
or modularized attributes), and outputs from these classifiers
are then combined using some decision combination procedure
to give an overall prediction. Three algorithms, namely the
majority voting, Bayesian, and BKS methods, have been im-
plemented to integrate the results of multiple PFAM classifiers.
The efficacy of these algorithms has been empirically studied
using two benchmark data sets obtained from a public-domain
repository.

From the experiments, it is obvious that multiple classifiers
are able to enhance the performance of individual classifiers.
Among the three decision combination algorithms, the BKS
approach demonstrated the best performance. Nevertheless,
it should be noted that approximations, according to [42],
have been made in the Bayesian approach, and this, in turn,
might compromise the performance. A comprehensive Bayesian
formalism would be able to take dependency between classifiers
into account when combining predictions (good discussion
on Bayesian methods for neural network can be found in
[50]).

Apart from investigation into the performance of different
decision combination algorithms, applicability of various input
pattern representation methods and learning strategies have also
been examined in the two benchmark problems. In contrast to
the usual ensemble approach that codes an input pattern into a
single vector and assigns to one classifier, the modular approach
segregates the input pattern into groups of related attributes and
feeds each group to an independent classifier. A decision is then
made by combining the predictions from all group classifiers.
However, the use of this modular approach is strongly depen-
dent on the correlation between the input attributes. If a strong
correlation exists, the modular approach will not only diminish
the overall performance, but will also induce unnecessary com-
plexity in the resulting system.

In view of the incremental learning property of PFAM, exper-
iments have been conducted to study the applicability of MCSs
in offline as well as online environments. One practical strategy
is to employ a dual-mode learning approach where each PFAM
classifier is first trained, offline, with a set of input samples with
different orderings. This approach helps establish a knowledge
base in the classifier before online, incremental learning is en-
gaged. Very encouraging results have been achieved which are
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comparable with, if not superior to, many reported results. By
combining the predictions from a committee of PFAM classi-
fiers, an autonomously learning system with improved accuracy
can be realized to undertake online pattern-classification prob-
lems.
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