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Online Pattern Classification With Multiple Neural
Network Systems: An Experimental Study

Chee Peng Lim and Robert F. Harrison

Abstract—In this paper, an empirical study of the development to hold true, e.g., the input features might consist of a variety of
and application of a committee of neural networks on online gyntactic primitives, linguistic variables, continuous, discrete,
pattern classification tasks is presented. A multiple classifier or nominal attributes, presenting all these features to one clas-
framework is designed by adopting an Adaptive Resonance _.. . ! L= e
Theory-based (ART) autonomously learning neural network S|f|er_ for it to make a decision is often difficult and_ can re-
as the building block. A number of algorithms for combining Sult in poor performance. Furthermore, concatenating all the
outputs from multiple neural classifiers are considered, and two features into a high-dimensional input vector will unduly in-
benchmark data sets have been used to evaluate the applicability duce the problem known as the “curse-of-dimensionality” [2].
of the proposed system. Different learning strategies coupling ence many researchers have proposed the application of mul-
offline and online learning approaches, as well as different input . i s .
pattern representation schemes, including the “ensemble” and tiple C_Iassmer _systen_]s and the combination O_f results using
“modular” methods, have been examined experimentally. Benefits SOMe information fusion algorithm to reach an integrated con-
and shortcomings of each approach are systematically analyzed sensus. In general, a committee of classifiers can be used in two
and discussed. The results are comparable, and in some casegyays: 1) select the output from the “best” (e.g., lowest error rate,
superior, with those from other classification algorithms. The p;ghagt nosterior probability) of the constituent classifiers for

experiments demonstrate the potentials of the proposed multiple ) . - -
neural network systems in offering an alternative to handle online each input; 2) combine the outputs from all the constituent clas-

pattern classification tasks in possibly nonstationary environ- Sifiers. In this paper, we are concerned with the latter approach
ments. when using a committee of neural-network-based classifiers.

Index Terms—Adaptive Resonance Theory, benchmark studies, M?thOd_s for Compining multiple networks can largely be cat-
decision combination algorithms, multiple neural network sys- €gorized into two, i.e., the ensemble and modular approaches
tems, online learning. [3], [4]. In the ensemble approach, each network is trained using
the same inputs such that each network provides a solution to
the same task. Outputs from these redundant networks are com-
bined to reach an integrated result. On the contrary, in the mod-

N PATTERN classification, the idea of using a committee aflar approach, a task is first decomposed into several subtasks
classifiers in solving a particular problem is not a new onand a specialist network is then trained using the inputs per-
As early as in the eighteenth century, the Condorcet Jury mogghing to the corresponding subtask. Subsolution outputs from
was designed to study the conditions under which a democragych of the specialist networks are combined so that the com-
model as a whole is more effective than any of its constitueplete solution to the task is obtained. Given a particular problem,
members [1]. In general, members of a committee of clasdieth the ensemble and modular multiple network systems can
fiers can be statistical-based, syntactical-based, neural-netwadexist at different levels of the problem solution. A detailed re-
based, or hybrid classifiers, or even a mixture of these clasgiew on multiple neural network systems can found in [3].
fiers. The primary objective of combining outputs from more There are a number of situations where an ensemble of neural
than one classifier is to achieve better generalization than wouldtworks is applicable. For instance, an ensemble of networks
be achieved by any of the constituent classifiers and, hencectm be used for selecting a subset of input features that best rep-
obtain better performance. The use of a single classifier systeggents a particular problem [5]. In general, the main motivation
hinges on the assumption that the system is able to capture fgrdising an ensemble of neural networks is to mitigate the limi-
to process all the input features satisfactorily regardless of whations of each constituent network. Since each network is prone
the features might be. In cases where the above assumption filsaking errors from one realization to another, their outputs
can be combined in such a way that the effect of these errors,
in terms of ensemble bias and variance [6], is minimized. It has
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each sample in the training set that reflects its importance. Bgowledge continuously and autonomously without corrupting
adjusting these weights, boosting forces a classifier to focasforgetting previously acquired knowledge. This ability is nec-
on different samples and thus leads to different results. Batksary, for instance, in handling online learning problems in
bagging and boosting apply voting to aggregate predictiomonstationary environments. In certain situations, offline, batch
Bagging assigns the same vote to each constituent classifiearning is sometimes not a viable option. This may be be-
while boosting gives different voting strengths to differentause the data sets are too large or, more importantly, the data
classifiers according to their accuracy rates. While baggimgay evolve with time. It is this very reason that triggers the
primarily focuses on variance reduction of the ensembieeds of autonomous, online learning systems. Specifically, the
classifiers, boosting acts to reduce both bias and variance. idsue of stability-plasticity dilemma[15] is addressed, i.e., how a
empirical comparison [10] has shown that boosting is generalgarning system is able to protect useful historical data from cor-
better than bagging, but not uniformly better for all the dataiption (stability) while simultaneously learning new data (plas-
sets used. ticity). This dilemma has also been addressed as the sequential
In the combination of modular networks, the concept déarning problem[16], [17]. If a multilayer feedforward network
“divide and conquer” is usually adopted whereby a compliwith standard back-propagation is used to learn the training data
cated task is decomposed into a number of subtasks wéequentially, a phenomenon known as catastrophic forgetting
reduced complexity, and a specialist network is assigned rt@y occur in which new knowledge will overwrite existing in-
handle each subtask. The constituent networks, which dammation stored in the network [17]. As a result, the learning
be composed by different learning systems, can exploit theiystem is neither stable nor usefully plastic.
specialist capabilities, and achieve results that would not beTo overcome the stability-plasticity dilemma, researchers
possible in a single network. For example, modular systemave proposed a number of incremental learning algorithms
coupling neural networks with hidden Markov models hawgith adaptive network structures. Instead of fixing the network
been proposed for speech recognition [11]. The mixture-eize a priori, the idea is to recruit an appropriate number of
experts [12] and hierarchical mixtures-of-experts [13] hawodes incrementally as data arrive so that a parsimonious
been used to partition the input space into several subspaggswork structure can be formulated. On the other hand, one
and simple models are used to learn information containedn first use a large, oversized network. As learning proceeds,
in each subspace. It is argued that such data partitioningtie network structure is adjusted by removing redundant nodes
more effective than training on the whole input data space.using some information-theoretic analysis [18]. According to
gating network is used to output a set of scalar coefficients tijap, Ch. 15] online learning networks can largely be divided
serve to weight the contribution of the various experts [12fito three categories:
[13]. Different methods for “hybridization and specialization”

of neural networks is presented in [14]. The idea is to use . i
ally add new nodes when input samples are presented;

modularity to extend the capabilities of single networks for 2) pruning networks, which start with a large number of
forming a system that is easier to train and to understand. For P 9 ' g
nodes and then delete them subsequently;

example, a combination of feedforward and recurrent networks ; : .
. . 3) growing and pruning networks, which add and delete
is proposed such that the relative strengths of both networks for . .
handling spatial and temporal tasks, respectively, are exploited. npdes simultaneously to reach an appropriate network
The organization of this paper is as follows. In Section Il, mo- size.
tivations for developing online learning systems along with a r&ome incremental learning networks that are related to our work
view on some incremental learning networks are presented. Tdre discussed in the following section, and a detailed review of
building block of the proposed multiple-neural-network systenstructurally adaptive networks can be found in [19]. Theoretical
i.e., an autonomously learning model based on the superviselysis, especially within the Bayesian framework, of online
Adaptive Resonance Theory (ART) [15] network, is then ddearning methods in neural networks can be found in [20].
scribed. Rationales and derivations of three algorithms used t@n the issue of catastrophic forgetting, French [21] argues
combine predictions from multiple networks are presented iRat forgetting is a direct consequence of distributed representa-
Section IlI. In Section IV, two benchmark pattern classification of information in a standard feedforward back-propagation
tion problems are employed to assess applicability of the prigetwork. One way to maintain generalization while reducing
posed system. Different input pattern representation schengggastrophic forgetting is to use “semi-distributed” representa-
(ensemble and modular) and learning strategies (offline and @ians. An algorithm is proposed in [21] in which the network
line) are studied systematically. The results are analyzed ggdillowed to develop semi-distributed representations by using
compared with other existing algorithms. Implications of the rex factor to compute the correlation between weight vectors en-
sults are also discussed, and conclusions are drawn in Sectiosdded by the hidden nodes. However, this approach might re-
sultin a loss of information, and might affect generalization of
the resulting network. Instead, adaptive versions of back-prop-
Il. ONLINE LEARNING NEURAL NETWORK SYSTEMS agation that are suitable for on-learning have been introduced
[22], [23]. Methods within the statistical physics framework
Although many characteristics of neural networks have bebave been adopted to analyze dynamics of online learning mul-
studied, one domain that receives little attention, and yet is itilayer neural networks. Training samples are repetitively sam-
portant to “intelligent” learning systems, is the ability to absorpled from a fixed data set, and the correlations between network

1) growing networks, which start with no nodes and gradu-
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parameters and training samples are examined. The proposed ART,

Target vector

approaches provide useful insights to monitor the evolution of
the error rate and to design optimal learning parameters.

The cascade-correlation Algorithm [24] is another learning
algorithm for the construction of architecturally dynamic
multilayer feedforward networks. The learning procedure starts
with a minimal network and incrementally builds a suitable
cascaded structure with as many layers as the number of added  Mapfield
hidden nodes. Many researchers have investigated and modified C> gain control
the Cascade-Correlation Algorithm to suit various application
domains [25]-[27]. In addition, researchers have proposed
algorithms for growing or shrinking the radial basis function
(RBF) networks. A resource allocating network (RAN) for
function interpolation is introduced in [28]. The system is
essentially a growing Gaussian RBF network which processes
information sequentially and adapts the network weights using
the least mean squares algorithm. If novelty is detected, i.e.,

ART,
vigilance

Map field P

vigilance
match

tracking
signal

+

vigilance

Input vector

the network prediction is unacceptably inaccurate with regard ART,

to certain criteria [28], then a new basis function located on
the input is added. In [29], an enhanced learning algorithAg. 1. FAM network.
based on Kalman filter is proposed for RAN, and work on the

enhanced RAN algorithm has been described in [30] and [31]. . .
In an attempt specifically to overcome the stability-plasticit erforms complement-coding [33]-{35] of the input patterns to

. : ” . void the category proliferation problem.
dilemma, a family of competitive learning networks known as : : : . .
During supervised learning, ARTreceives a stream of input

ART has been proposed [15], [32]-[37]. The ART models have . X
revealed promising characteristics for building autonomo patter vectors; A}, whereas ARJ receives the corresponding

S . .
learning systems. In general, the growth criterion of maét%frget—class vector¢B}. In general, ARY consists of an inde-

. 2 . endent Fuzzy ART module to self-organize the target vectors.
neural networks relies upon a similarity measure (for instan

a distance metric) between the input pattern and Iearnegwever, in one-from¥V classification (i.e., each input pattern

exemplars to select the best-matched prototype. An arbitrz?relongs to only one of thév' possible output classes), ART

threshold is then applied to decide whether or not to addca/n be replaced by a single layer containMgodes. Then, the

S . -bit teaching stimulus can be coded to have unit value corre-
new node. ART has a similar growing methodology. However .
L ) . sponding to the target category and zero for all others.
one distinct difference is that an ART network has a two-stag : . T .
The learning algorithm of FAM is similar to the sequential

hypothesis selection and test process. On presentation Ofarllee%\(/jer clustering algorithm [38]. However, FAM does not

input pattern, a feedforward pass is initiated to select the mg A
S : o . irectly associate input patterns at ARTo target patterns at
similar prototype according to a competitive selection procesg . ' e . .
S T,. Rather, input patterns are first classified into prototypical
The winning prototype, nonetheless, has to undergo a feedbac% T : .
. - ategory clusters before being linked with their target outputs
pass to perform a test against a vigilance threshold. If thé ! . . .
. L L Ia a map field. At each input pattern presentation, this map
vigilance criterion is not satisfied, then a new cycle of sear#’h . : :

) . o - leld establishes a permanent link between the winnitfg
(selection and test) ensues until the criterion is satisfied by an . L
- . ategory prototype and the target outpufin This association

existing prototype, or the creation of a new node to code 58 : S ;
. h : ; . : IS.used, during test, to recall a prediction when an input pattern
input pattern. Itis the inclusion of this feedback mechanism that
A : : 1S epresented to AR
assists in forming a stable, and yet plastic knowledge structur
in ART networks. This characteristic, thus, differentiates ART .
from other incremental neural network models. B. Probabilistic Neural Network (PNN)
The PNN [39] is a neural network model that implements the
Bayes’ theorem in its learning methodology. It learns instan-
A. Fuzzy ARTMAP (FAM) taneously in one-pass through the data samples and is able to
form complex decision boundaries that approximate asymptoti-
A supervised ART network known as FAM [35] which real-cally the Bayes optimal limits. In addition, the decision bound-
izes a synthesis of ART and fuzzy logic has been introduceaties can be modified online when new data is available without
Fig. 1 depicts a schematic diagram of the FAM network. It comraving to retrain the network. The key feature of the PNN is
sists of two fuzzy ART [33] modules, ARTand ART,, linked its ability to estimate the probability density functions (pdfs)
by a map field,/'**. The ART, (ART,) module has two main based on data samples by using the Parzen-window technique
layers of nodesFy (FY}) is the input layer; and’s (F?) is a [40]. Fig. 2 depicts a schematic diagram of the PNN for bi-
dynamic layer where each node encodes a prototype pattermafy classification tasks (clast or B). The PNN consists of
a cluster of input patterns, and the number of nodes can befiodr layers of nodes: the input layer, pattern layer, summation

creased when necessakyf. (F) is a normalization layer which layer, and output layer. Nodes in the pattern layer are organized
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Fig. 3. Structure of the PFAM network.
Fig. 2. Probabilistic neural network.

classes is established which enables the application of Bayes,
in groups corresponding to different target classes. The pattéigk-weighted, classification in FAM; 2) the number of pattern
nodes belonging to the same output are then linked to a sun@des in the PNN is reduced by the clustering procedure of
mation node dedicated to that particular target class. During dgAM. The above description provides a conceptual framework
eration, the input patterns;, is first fanned-out to the patternfor incorporating FAM and the PNN into a unified, hybrid
layer where each pattern node computes a distance measureygtem, and the rationale behind their integration. In practice,
tween the input and the weight pattern represented by that nogveral modifications are necessary to allow effective combina-
The distance measure (e.g., dot-product) is then shunt throdigi of both the networks, and to increase generalization ability
a Parzen kernel. The summation nodes sum outputs from tHehe resulting system. These include procedures to estimate
Parzen kernels. These outputs correspond to estimates ofk@enel centers and widths. Explanation on all these procedures
pdfs of the input pattern with respect to each target class, i.ean be found in [41].
p(z]A), p(z|B).

lll. DECISION COMBINATION IN MULTIPLE CLASSIFIER

C. Probabilistic FAM (PFAM) SYSTEMS (MCSs)

One disadvantage of the PNN is that it encodes every inputin addition to the motivations for combining multiple net-
pattern as a new node in the network, thus, increases the matrks stated in Section I, there is another reason for the use of
work complexity and computational cost if large or unboundedultiple ART-based classifiers (and most incremental learning
data sets are used. Nevertheless, this problem can be alleviateddlems), i.e., to minimize the effect of data ordering in online
by using a clustering technique such as FAM. Our studies hdearning. In incremental learning systems such as ART, the for-
found that there is a close similarity in the network topology benation of prototypes is affected by the sequence of input sample
tween FAM and the PNN, as shown in Fig. 3. Notice thatfilte presentations. This could lead to different predictions of target
andFy layers correspond to the input and pattern layers wheredasses, and thus different accuracy scores for each network re-
the map field layer F**) corresponds to the summation layeralization. Thus, good long-term performance of the network de-
In one-from4V classification, each node iRy is permanently pends on agood initial formation of cluster prototypes. The data
associated with only one node i, which is then linked to ordering effect is further exacerbated if the prototypes are to be
the target output ifF’y. Thus, the map field nodes can be usedstablished autonomously, online, because in this case the input
to sum outputs from all théy nodes corresponding to a particsamples are presented only once, and in a fixed order. One way
ular target class, taking the role of the PNN summation nodés.mitigate this problem is to train a pool of networks offline,

In view of the suitability of the incremental learning propertgach with a different ordering of input samples. During the pre-
and the similarity of the network topology between FAM andiction phase, the results from several networks can be com-
the PNN, a novel hybrid network, based on the integration bfned to give an overall prediction. It is, therefore, worthwhile
FAM and the PNN, has been proposed for online classification investigate how to integrate decisions from multiple PFAM
and probability estimation tasks, and is called PFAM [41]. networks so that a robust and high performance classification
The online PFAM algorithm is divided into two phasessystem could be formed.
First, the FAM clustering procedure is used for classifying the Here, three decision combination algorithms are discussed to
input patterns into different categories (learning phase). Sub&em a PFAM-based MCS, as shown in Fig. 4. The firstone is a
quently, the PNN probability estimation procedure is used 8imple majority-voting scheme [42] where the target class that
predict a target output (prediction phase). The advantage of theseives the highest number of votes is selected as the final pre-
integration is twofold: 1) a probabilistic interpretation of outpudliction. The second method is based on the Bayesian theorem
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Final Prediction Given a data set containiny samples, all predictions (cor-
rect and incorrect ones) of thigh classifier,ey, is recorded in
LDecision Combination Module its confusion matrix constructed as follows:

y
Prediclio/ rPrediction—2 ﬁiclion—N n]fl; Tllf2 - n’f( M+1)
k k k
M1, M2z =0 Tgprqn)

k _
Classifier-1 | [Classifier-2 | «++ [Classifier-N CM" = . . . . )
. . . . I nk nk ... /"Lk
Fig. 4. Schematic diagram of an MCS withindependent classifier modules. M1> M2 M(M+1)
Outputs from all classifiers are combined using a suitable decision combination e . o
algorithm to give an overall prediction. whereng;, i = 1,...M, 5 = 1,..., M + 1 indicates the

number of samples belonging €, but assigned to clagsby
[42], [43] that is commonly employed in evidence gathering and - The total number of samples encountered:pys

uncertainty reasoning. The third one is the behavior-knowledge M Mi1
space (BKS) approach proposed in [44]. N = Z Z nk. (5)
1]
=1 j=1

A. Majority Voting
Suppose there are target classes where each class is repr@Ud the number of samples belongingCipis

sented byC;, Vi e A = {1, 2, ..., M}, the task of a classifier M+1
is to assign the input sample, to one of the {1 + 1) classes, nk = Z nfj (6)
with the (M + 1)th class denoting that the classifier rejegts j=1

The most common method to combine the outputs is by
jority voting. If there areK classifiers denoted by, .. ., ek,
the problem is to produce a combined resdilfz) = j, j €
{1,2, ..., M, M + 1}, from all K predictionsex(z) = jx, . M .

k=1, ..., K.Abinary function [42] can be used to represent Nej = Z nij (7)
the number of votes, i.e., =1

”’5".’5., summation through row The number of samples that is
assigned to clasgby ey is

1, ifep(z)=1d,i€A ie., _sum_mation _through cplumgi. Thi_s_ confu_s_ion matrix_
(1) provides information regarding a classifier’s ability to classify

0 accurately samples from a particular target class. In the event

Then, sum the votes from ali classifiers for eacit; ex(z) = j (classifiere;, predicts that: belongs ta”;), the truth

thatz really comes from clas§’; is associated with a factor of

uncertainty. By utilizing information stored in the confusion

matrix, the uncertainty of propositian € C; giveney(z) = j

can be computed according to

Vi(z € C;) =
& ) { otherwise.

7

K
Ve(zeCi)=> Vi(weC), i=1,....M (2
k=1

and the combined resulj(z), can be determined by

7 if VE(Z (S CJ) = maxieAVE(z (S Cl) P(Z € Ci|ek($) = J) = nkj' = M = ) i=1,..., M.
°) k
Ve(z € C; 2 n
E(III) = andw > A = Y (8)
M +1, otherwise From the viewpoint of uncertainty reasoning, the confusion

(3)  matrix of a classifier can be regarded as a collection of evidence
where0 < A < 1is a user-defined threshold that controls thgupporting different target classes, and (8) can be interpreted as
confidence in the final decision [42]. a set of belief functionshel(s), on M propositions that: €
C; [42]. The higher the belief function of a proposition is, the
more likely that it is true. WithK classifiers, there will b

The voting strategy is solely based on the predicted outconmhfusion matrices an& eventse; (z) = ji, ..., ex(z) =
produced from all classifiers, where each classifier is treatgg. Each classifiex € C; expresses its belief functions [42] as
equally without considering its errors. A more reasonable
approach is to take into account the predictive accuracy bt (z € Ciler(x) = ji, EN)
each classif_ier. The predi(_:tions from highly accurate classifiers = P(z € Cilen(z) = j1) i=1,...,M (9)
should be given more weight than those from the less accurate
ones. This is the rationale behind the use of the BayesiahereE'N denotes the common classification environment that
approach to combine decisions from multiple classifiers. Th®nsists of allK events. The problem now is how to integrate
Bayesian algorithm presented below has been proposedthie belief functions from¥ classifiers into a combined set of
[42], but the basic idea has been used previously for eviderwalief functions.
propagation and uncertainty reasoning in intelligent systemsBayesian formalism has been adopted to propagate and up-
[43]. date the belief functions in the Bayesian network [43]. The same

B. Bayesian Approach
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idea has been used in [42] to combiliesets of belief function. e 1 9 e M+1
Using Bayes’ theorem, (9) is expanded to e,
Un Ulz Ul(M+l)
bel(b) 2 U, Uy UZ(MH)
- bel(x © Ci|el($) R eK(z) - EN) M+1 | Uiy Uise  Ulnnsuny
B P((It S Ci|61(1') = j17 e, eK(:z:) :jK, EN)

Fig. 5. Two-dimensional BKS.

Plei(z)=j1,...,ex(z)=jk|z€C;, EN)Pe C;|EN)

Pel.'t:jh..../eKz:ijN )
Eal) (=)=ix|EN) where eactP(z € C;lex(x) = ji) can be computed from the
confusion matrix using (8) by replacingwith j,. Based on the
combined belief functions, the one with the highest estimate is
selected as the final outcome, i.e.,

(10)

To simplify the combination of the belief functions, it is as
sumed that the environmeri N consists ofK-independent
events with)M mutually exclusive sets of target output. Thus,

j if bel(j) = ica bel(i
the joint probability is reduced to o el() ,max ea bel(i)
E(z) = andbel(j) > A (16)
P(ei(z) =1, ..., ex(x) = jk|z € C;, EN) M +1, otherwise.
P(el(.’ﬂ):jh...76[{($):j1(|EN) . . .
X Again,0 < A < 1 is a user-defined threshold to regulate
I Plex(z) = jilz € C;, EN) confidence associated with the final decision.
k=1 /
S D¢ Bks Approach
I P(en(z) = ju|EN) : pproach | |
k=1 One of the criticisms of the Bayesian approach is the assump-

tion that all classifiers must operate independently in order to
tackle the computation of the joint probabilities. This assump-
P(er(z) = julz € Ci, EN)  P(x € Cilex(x) = jr, EN) tion is unlikely to hold in many applications. To avoid using the

Plex(@) = Gr|EN) = Plz € G[EN) assumption, the BKS approach that concurrently records the de-

Using the Bayes' rule

cisions of all classifiers on each input sample is proposed in [44].
(12) A BKS is a K -dimensional space in which each dimension
corresponds to the decision of one classifier. The intersection of
(11) becomes the decision from multiple classifiers occupies one unit of the
’ BKS, e.g.BKS(e1(z) = j1, ..., ex(xz) = jx) denotes aBKS
11—‘[ Plew(x) = julz € Ci, EN) unit where eacl;, produces a predictiofy, k=1, ..., K.In
Ee1 ' each BKS unit, there ar&f partitions (cells) for accumulating
) the number of samples actually belongingto As an example,
kljl Pler(x) = ji|EN) suppose two classifiers are used to categorize the input samples
- . into M target classes. Then a two-dimensional (2—-D) BKS can
, . be formed, as shown in Fig. 5.
kl;ll Plz € Cile() = jr, EN) Each BKS unit, U;;, is further divided into M cells,
= K - (19 nf, ..., nf, where H denotes the overall prediction
kl:[1 P(z € Gi|EN) ei(x) = ji, ..., ex(x) = jr. The frequency of the number
- of samples belonging o, i = 1, ..., M is recorded in each
By using (11) and (13), (10) becomes nf,i=1,..., M.When aninput sample, is presented, one
of the BKS units will become active (known as the focal unit)
after the decisions from alkl classifiers have been received.

In the above exampld/s;, will be selected as the focal unit if

[l P e Ciles(s) = ju, EN)

bel(i) = *=—— P(z € Gi|EN).  ¢y(z) = 3 andey(z) = 4. Then, the total number of samples
Il P(z € C;|EN) in the focal unit is computed
k=1
(14) o
To further simplify calculation of the combined belief func- _ H
tion, the following estimate can be used [42]: T(H) = Z; i (17)
K . . .
fi, e < et = e 7 W s
bel(i) = = (15)

=1
I K )
2 LI Plz € Ciler(@) = ji) RH)—j where n —maxea(n).  (18)
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The decision rule for determining the final outcome is from all classifiers were combined using the three combination
methods to give a final decision.

H
TR

R(H), W T(H) > 0and7om > A ()

A. Quadruped Mammals Data Set

E(z) =
This data set is an artificial domain first used to evaluate
CLASSIT, an unsupervised machine learning algorithm [45].

where0 < ) < 1 is a user-defined confidence threshold. ~ There are four types of mammals, namely cats, dogs, horses, and
The BKS appears to be similar to the confusion matrigiraffes. Each mpl_Jt sample is described by a set of eight com-
used in the Bayesian approach. However, the Bayesian metR@fents: head, tail, neck, torso, and four legs; and each com-
needs to compute the multiplication of evidence taken froRPnent is further d_escrlbed by nine attributes: texture, height,
the confusion matrices to approximate the joint probability ¢fdius, three locations, and three axes. Hence, there are 72 at-
K events when evaluating the combined belief function. Thibutes per sample in total. The program for generating the data
step is avoided in the BKS approach, in which a final decisicifMples can be obtained from [46].
is made by assigning the input sample directly to the class thaft) Offline Learning With the Ensemble Approachm [37],
has accumulated the largest number of samples. The simplidif§ion ARTMAP applied each of the eight components (head,
of this BKS approach may not be detrimental; instead qgll, neck, torso, apd four legs—each with nine attributes) to a
has provided a fast and effective way of combining multipidifférent unsupervised ART network (modular approach), and

predictions, as demonstrated in [44] for the classification §#€ results were concatenated to a global network to make afinal
unconstrained handwritten numerals. prediction. Two training sets comprising 100 and 1000 samples

were applied. The trained network was tested on 1000 samples.
The performance, averaged over three runs, was compared to an
ensemble approach by concatenating all 72 attributes to a single
In the following experiments, two benchmark data sets weFAM network.
used and a few practical operating strategies were envisaged thlere, two experiments were conducted using the same
allow the system to learn incrementally and to classify pattertraining and test set sizes as in [37]. In addition to averaging
autonomously. These two benchmark problems have bedée results of three runs, MCSs were formed to combine the
studied in [37] using single-channel FAM and multichannelutcomes from these three runs. Table | lists the experimental
Fusion ARTMAP. Note that Fusion ARTMAP is an extensiomesults together with the reported FAM results in [37].
of FAM that introduces a modularized technique for data fusion A few observations can be made from Table I. The perfor-
and classification. Hence, the results in [37] can be companethnce of PFAM is inferior to that of FAM, which shows perfect
with those in the following experiments. In order to have eesults in both experiments. The failure of PFAM to achieve the
fair comparison, the procedures in [37] have been followeshme performance as FAM might be due to the small number
as closely as possible, e.g., network parameters, performaanterototype patterns being created in the system. The average
indicators, number of training and test samples, number wimber of prototypes created in PFAM was, respectively, 5.7
experimental runs. Unless otherwise stated, the PFAM netwddk 100 training samples and 7.8 for 1000 training samples. No-
parameters used throughout all experiments were: baseliive that PFAM (so as PNN) uses Parzen windows to estimate
vigilance parametef, = 0.0; learning rate3, = 1.0 (fast the pdfs. Accuracy of the pdfs depends on the number of proto-
learning); ., = 0.0 (conservative mode) [35]; overlappingtypes, i.e., the larger the number of prototypes, the more accu-
parameterr = 1.0 [41]. Note that the above parameters wergate the estimated pdfs become. Theoretically, the pdfs will con-
set to their “default” values, and no additional effort was spemerge asymptotically to the actual underlying functions in the
in fine-tuning these parameters. Indeed, it is our belief thatlimit as the number of prototypes increases [39], [40]. As can be
good system should require as few user-specified parametsgen in Table I, performance of PFAM improved as the training
as possible. Nevertheless, a system with some adjustaddenples increased from 100 to 1000, in which case more pro-
parameters may allow users to regulate the system complexibtypes are created. In comparing performance between single
e.g.,p, offers a means to govern the coarseness or finenesgl multiple classifiers, MCSs were able to improve the results
of the clusters to be formed in ARTMAP networks [34], [35]of individual classifiers. This is true for all three decision com-
Specifically, two different ways of input pattern representatidination methods. From Table |, the Bayesian and BKS methods
were experimented using the PFAM-based MCSs. show a better performance than the simple majority-voting rule.
1) Ensemble Approachvhere the input samples were used 2) Offline Learning With the Modular Approachthree
in their original, concatenated form. In this approach, a numbeICSs were formed, each with eight modules of PFAM classi-
of PFAM classifiers were first trained using different orderingBers. Each classifier was dedicated to handle one group of the
of the training set, and then tested on the test set. Predictialada components, i.e., head, tail, neck, torso, and four legs. All
from all classifiers were combined with the voting, Bayesiatine experiments were repeated three times. The average results
and BKS methods to give an overall decision. of individual classifiers are listed in Table Il. The results of
2) Modular Approach where each input sample was diFusion ARTMAP in [37] and MCSs are shown in Table III.
vided into groups of related attributes. During training, each Again, a committee of classifiers proves to be useful in
group of attributes extracted from a training sample was amproving the performance of single classifiers. Perfect results
signed to a PFAM classifier, and during test, the predictiorf$00% accuracy) were obtained with the Bayesian and BKS

M + 1, otherwise

IV. OFFLINE AND ONLINE PATTERN CLASSIFICATION
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TABLE |
RESULTS OFINDIVIDUAL AND MULTIPLE CLASSIFIERSFROM THE ENSEMBLE 100 ES z ———
APPROACHUSING THE QUADRUPED MAMMALS DATA SET (THE FAM RESULTS // — “ji . _I/ ... LN g
ARE ADAPTED FROM [37]) f [P
Training  FAM __ PFAM Multiple Classifier System 90 é
Set Size Voting Bayesian BKS ~
100 100% 97.7% 99.6% 100% 100% g
1000 100% 99.6% 100% 100% 100% > 80
-
Ll
e 1 Ensemble
TABLE 1 < —_— :
RESULTS OFINDIVIDUAL CLASSIFIERSFROM THE MODULAR APPROACH 0 Modular (Votmgf)
USING THE QUADRUPED MAMMALS DATA SET —--— Modular (Bayesian)
- L —— Modular (BKS)
Classifier Accuracy (%) 60
100 Samples 1000 Samples
Head 96.3 98.7
Neck 98.9 99.0 50 1 1 L 1
Torso 95.8 97.2 200 400 600 800 1000
Tail 96.5 97.0
Leg 1 98.1 98.9 No.of Input Samples
Leg 2 96.6 98.1
Leg 3 96.8 99.2 Fig. 6. A comparison of the online results between the individual classifiers
Leg 4 96.5 973 with the ensemble approach and the MCS with the modular approach. The error
bars indicate the standard deviations of the average results from three runs.
TABLE I .
RESULTS OFMULTIPLE CLASSIFIERSFROM THE MODULAR APPROACH and test sets—all data samples were first tested and then
USING THE QUADRUPED MAMMALS DATA SET trained in a fixed order. Hence, knowledge established in all
— — — classifiers would be the same since they are trained on the same
raining usion ultiple Classifier Systems
Set Size ARTMAP Voting  Bayesian __ BKS sequence of sgmples. In the modular approach, however, each
100 96% 99.9% 100% 100% classifier is trained on only a group of attributes of the sample.
1000 100% 100% 100% 100%

Therefore, MCSs can be formed to combine the predictions
from classifiers based on disparate attribute groups.

approaches for three runs on both cases of 100 and 10000 this experiment, 1000 data samples were generated.To_caI-
training samples. Notice that the MCS results listed in Table [ftlate the online accuracy, a 100-sample window was applied,
are equivalent to, if not better than, those of fusion ARTMAFE-9-, accuracy at sample 200 was the percentage of correct pre-
Nevertheless, by increasing the training samples to 1000, @ftions from trials 101-200. All th(=T online result_s were aver-
classifiers were able to perform with perfect accuracy. Whéged across three runs. Fig. 6 depicts a comparison of the on-
individual classifiers are concerned, the ensemble approdiif results between the ensemble and modular approaches. The
(Table | —FAM and PFAM) achieves better performancétandafd deV|at|0n_s of_three runs are plotted as error bars to indi-
than the modular approach (Table I1). By reducing the inpﬁﬁte the spread of individual results across the averages. As can
dimension from 72 to 9, fewer prototypes were formed usirR)e seen, the modular approach attained a performance superior
the modular approach (average numbers of prototypes wipdhat of the ensemble approach. .Perfect results (100% accu-
4.2 and 6.1) during the experiments. As a result, the estimatégy) were achieved by the Bayesian and BKS methods after
pdfs were less accurate compared to those formulated usfffgountering fewer than 200 input samples. This perfect per-
the ensemble approach, which in turn caused a lower clasdigtmance was maintained until the end of experiments in all

cation accuracy. This drawback, however, can be overcometB{/ee a}ttempts. Although votiqg exhibited inferior results to the
combining the decisions from multiple classifiers (Table 111). Bayesian and BKS methods, it still outperformed the ensemble

3) Online Learning: In online learning, the system imitates@PProach.
the condition of a human operating in a natural environment.
Each incoming datum is used as a training sample as well aBa
test sample. The online learning cycle proceeds as follows: arThis database comprises a small subsection ¥82.00
input pattern is presented to PFAM, and a prediction is madaxels) of a scene from the original satellite images. Each
The prediction is compared with the target class to determipiel covers an area of approximately 8080 meters on the
its correctness or otherwise. This outcome constitutes the clgeund. One frame of the Landsat satellite imagery comprises
sification accuracy. Learning then ensues to associate the injpénsities of four spectral bands of the same scene. Two of the
with its target class. spectra are in the visible region (corresponding approximately

The modular approach with eight PFAM classifiers (eado green and red regions), and two are in the (near) infrared
with nine attributes) was compared with the ensemble approaelgion. The Landsat satellite images database is also obtainable
of a single PFAM classifier (72 attributes). Note that in onlinéfom [46]. The database has been divided into a training set
learning, the voting, Bayesian and BKS procedures are nuft4435 samples, and a test set of 2000 samples. Each sample
applicable to combine the results from the ensemble approabhs 36 attributes (nine attributes for each of the four spectral
This is because there is no differentiation between trainitgnds), and there are altogether six target classes.

Landsat Satellite Images
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TABLE IV TABLE VI
CLASSIFICATION ACCURACY RATES, AS REPORTED IN[47], FROM VARIOUS RESULTS OFINDIVIDUAL CLASSIFIERSFROM THE MODULAR APPROACH
ALGORITHMS FOR THELANDSAT SATELLITE DATA SET USING THE LANDSAT SATELLIET DATA SET
Algorithm Acz:;r)acy Algorithm Acz:;r)acy Classifier P, =00 P, =09
K-NN 90?6 Cals 84?9 Band 1 Accuracy (%) 52.7 56.2
LVQ 89.5 Quadisc 84.5 No. of Prototypes 891 991
DIPOL92 88.9 AC? 84.3 Band 2 Accuracy (%) 51.2 54.0
RBF 87.9 SMART 84.1 No. of Prototypes 628 1021
ALLOCS80 86.8 Logdisc, Cascade 83.7 Band 3 Accuracy (%) 373 42.2
CART 86.2 Discrim 82.9 No. of Prototypes 1063 1375
IndCART 86.2 Kohonen 82.1 Band 4 Accuracy (%) 50.9 54.9
Back-prop 86.1 CASTLE 80.6 No. of Prototypes 766 1099
Baytree 853 NaiveBay 71.3
NewID, CN2, C4.5 85.0 Default 23.1
TABLE VIl
RESULTS OFMULTIPLE CLASSIFIERS FROM THE MODULAR APPROACH
TABLE V USING THE LANDSAT SATELLIET DATA SET
RESULTS OFSINGLE AND MULTIPLE CLASSIFIERSFROM THE ENSEMBLE
APPROACHUSING THE LANDSAT SATELLITE DATA SET (THE FAM RESULTS MCS — —
ARE ADAPTED FROM [37]) Pq =00 Pa =09
Voting 59.4% 65.6%
Algorithm — - Bayesian 69.2% 74.8%
€ Pg =00 Pg =09 BKS 83.3% 86.1%
FAM Accuracy (%) 83.0 89.0
No. of Prototypes 89 704
PFAM Accuracy (%) 814 89.0 . . .
No. of Prototypes 87 518 by FAM. and PFAM, which were about eightfold and sixfold,
Accuracy Voting 86.1 90.8 respectively, compared to those create@py= 0.0. Note that
of (’;,’I)CS Sayean gzg 331'2 the k-NN approach, which achieved the best accuracy of 90.6%
0 . o

among all algorithms used in the Statlog Project, has to store
all 4435 training samples as prototypes [37]. Thus, in compar-
This Landsat database serves as a more challenging bensbtin with £-NN, FAM and PFAM (both withp, = 0.9) could
mark problem compared with the quadruped mammal databashieve a slightly lower accuracy (89% versus 90.6%) but with
as it comprises real and noise-corrupted satellite images. Fahigher degree of code compression.
thermore, many classification algorithms have been evaluatedAs might be expected, a committee of classifiers was able to
using this data as part of the Statlog Project [47]. There are a uaprove on the results of individual classifiers. In terms of per-
riety of indicators presented in [47] for performance comparisdarmance comparison, the BKS-based MCS achieved the best
among various algorithms. Here, we only extracted the acaesults, i.e., 91.7% accuracy fpg = 0.0 and 94.5% accuracy
racy rates in [47], as listed in Table IV, for comparison purposésr p, = 0.9. The voting and Bayesian MCSs also outperformed
with those from FAM and Fusion ARTMAP in [37]. Other indi- FAM, PFAM, and many other algorithms in Table IV.
cators such as memory storage, computational time, have beewith p, = 0.0, the performance of PFAM was relatively poor
excluded. Note that the “Default” accuracy rate in Table IV isompared with other methods. This may be accounted for by
calculated by categorizing all the test samples as belongingthe same phenomenon observed in the experiments using the
the class that has the highest number of samples, i.e., the mguadruped mammal data set, i.e., accuracy of the estimated pdfs
imum a priori classification rule. was directly affected by the number of prototypes. That is why
With the ensemble approach, each input sample to PFAMsubstantial improvement could be achieved by PFAM with
consisted of a 36 dimensional vector which had been normalized= 0.9, in which more than 500 prototypes were created.
between zero and one. With the modular approach, the sam@) Offline Learning With the Modular Approachn addi-
input sample was divided into four spectral bands, each cotien to the concatenated input samples, a modular approach of
prising a nine-dimensional vector (again, normalized betwedividing the input sample attributes into the four corresponding
zero and one) corresponding to a different spectral band. Apectral bands has been tested. Table VI summarizes the average
training data were randomized to produce five differently oresults and the number of prototypes of five runs. The modular
dered training sets, and the results were averaged across &ipproach proved to be a failure with this Landsat data set. As can
runs. be seen from Table VI, not only were the classification results
1) Offline Learning With the Ensemble Approachable V exceptionally poor, but there was a proliferation of prototypes.
shows the results of PFAM and the MCSs from our experimerEsen by raising,, to 0.9, the results were still significantly in-
as well as those of FAM in [37]. In accordance with the exerior to those from the ensemble approach. Among the four
periments reported in [37], two baseline vigilance values wespectral bands, accuracy of the band 3 classifier was the worst
tested, i.e., a low value @f, = 0.0 to create coarse clusters ofwith the highest number of prototypes.
input samples, and a high value®f = 0.9 to create fine clus-  Table VII shows the results of the MCSs by combining the
ters. Other network parameters were the same as those usaslilcomes from the four individual (band) classifiers. Generally,
the quadruped mammal experiments. A considerable improwtassification accuracy improved with the voting, Bayesian or
ment in classification accuracy was achieved with= 0.9 with  BKS methods. In particular, the BKS approach produced an in-
the tradeoff being the increased numbers of prototypes creategase of more than 30% in accuracy for bpth= 0.0 and
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7. = 0.9 compared to individual classifiers. The BKS result ®
are also comparable with those in Table IV. 80 - -~
Deficiency of the modular approach is also experienced wi / Ve _—(d

the Fusion ARTMAP network. According to [37], the best per Sy / - — ()
formance of Fusion ARTMAP was about 70%, and the san /// P T o)
prototype proliferation problem was observed. Failure of tt 60 |-, / /'{.»"
modular approach on this data set might be due to two facto & // / et (a)
interspectral dependency and the presence of noise in the s: 7 _ ’
lite images. By segmenting the attributes of different spectr.§ / P
bands to different classifiers, interspectral information is los§ 40 - ///_.-
Without the benefits of information from other spectra, noise i 8 s /
the data is aggregated. For example, the “red” sensor is ins ® {/ S confidence threshold
sitive to certain “green” frequencies, and it will produce ver // Increasing
irregular images associated with different output classes wk 20 |/~
the region under scrutiny is mostly green [37]. This pitfall i /
avoided in FAM when all sensor data are concatenated into ¢
input sample so that interspectral information can be utilized |
the classifier to form input features which are more consiste 0 ' ‘ ' -
with the target class. Thus, FAM is able to achieve good resu 0 10 20 30 40
even with a reduced number of prototypes. Substitution Rate

.3) Offllne_l__ear_nlng with Vane.lb.le Confidence Thresholtk . Fig. 7. Percentages of the substitution rate against recognition rate of the
binary classification problems, it is useful to apply the receivgjcss, parameterized by varying confidence threshold. (a) Vofing= 0.0).
operating characteristics (ROC) curve to assess the tradeoff (pevoting (¢, = 0.9). (c) Bayesiang, = 0.0). (d) Bayesiang, = 0.9). (e)
tween false positive/false negative of a classifier, especially #S (. = 0-0). () BKS (o, = 0.9).
medical domain [48]. Indeed we have reported the use of ROC

and PFAM in medical applications [49]. In multiple-class probthe confidence threshold. The plot illustrates that by increasing
lems, the ROC curve becomes less practical. Here, each decisi@rom zero to one, more and more input samples are being re-
combination algorithm includes a confidence threshold to regcted as it becomes more difficult for the predicted output to
ulate the confidence associated with the predictions from mightisfy the confidence level. Both the recognition and substi-
tiple classifiers. This threshold,< A < 1, can be manipulated tution rates gradually decrease to 0%. Notice that even in the
either to accept a classifier's prediction if the combined confgjtuation of low substitution rates, the BKS approach is able
dence levelis higher than or to reject the prediction otherwise.to maintain a relatively high recognition rate (and high relia-
Hence, the classifier’s reliability can be adjusted accordinglyjlity) compared with the Bayesian and voting methods. These
The following performance measures, as recommended in [4g}servations are true for both experiments uging= 0.0 and
can be used to evaluate the effects\ai classification perfor- 7, = 0.9.
mance: 4) Dual-Mode Learning:In cases where there is a high cor-
Recognition RateRatio of the number of correct classifica-relation and dependency between attributes of the input sam-
tions to the total number of samples (i.e., the accuracy indexgies, segmenting these attributes into different classifiers offers

previous experiments). no benefits at all. As a result, online learning experiments with
Substitution RateRatio of the number of incorrect classifi-modularized inputs, such as those conducted for the quadruped
cations to the total number of samples. mammal database, do not seem to be appropriate for the Landsat
Rejection RateRatio of the number of rejected classificationglatabase.
to the total number of samples. With the ensemble approach, online combination of decisions
across a committee of classifiers is unrealizable because data
Recognition arrive in a fixed order. It seems that MCSs are not applicable

Reliability Rate Reliability = -— Rejection for online learning with concatenated inputs. In practice, how-

ever, there is no reason why such MCSs cannot be employed

The experimental results of the MCSs with the modular apnline, after an initial period of training. As a result, a strategy
proach were re-evaluated using different threshold values. &sdevised where an offline learning process is first conducted
might be expected, trade-off between recognition and rejectitmequip each individual classifier with a different “knowledge”
took place as was increased from zero to unity. In other worddyase before online learning is initiated. During offline learning,
by manipulating the confidence threshold, the system desigmiferent classifiers will establish different category prototypes,
could adapt a classifier system to perform with high or low réhus predictions will be different when they are switched to on-
liability to suit the problem under investigation. Furthermordine learning even though the classifiers are now receiving in-
manipulation of the confidence threshold provides an alterneaming samples in the same order. The decision combination
tive means of comparing the performances of the three decisgrhemes, once again, can be implemented to combine outcomes
combination schemes. Fig. 7 depicts a plot of the percentage$rom a variety of differently trained classifiers using concate-
the substitution rate against recognition rate, parameterizedrated samples. We call this stratedyyal-mode learning
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100 additional advantage here is that the system is able to learn on-
e line and the learning process is on-going. The problems faced
o R Nt N in offline learning, such as a predefined network size and re-

training, are avoided. Decisions from multiple classifiers can

T T T~ — also be combined to produce a classification system with high

s 70 accuracy.
-
§ 60 |- Average of 5 individual classifiers
32
: sol | T Multiple classifier system (Voting) V. CONCLUSION
— — Multiple classifier system (Bayesian) A committee of neural network classifiers has been studied
40 . . . e
-~ Multiple classifier system (BKS) to tackle online pattern classification problems. The classifier
30 1 used, PFAM, is a hybrid system of FAM and the PNN. It is

() an incremental adaptive system capable of online, supervised

20 L | L . learning and probability estimation. In the manifestation of
1000 2000 Ky 4000 5000 MCSs presented in this paper, an independent classifier module
No. of Input Samples is dedicated to handle a set of attributes (either concatenated
{00 or modularized attributes), and outputs from these classifiers

are then combined using some decision combination procedure
to give an overall prediction. Three algorithms, namely the
majority voting, Bayesian, and BKS methods, have been im-
80 - plemented to integrate the results of multiple PFAM classifiers.
The efficacy of these algorithms has been empirically studied

5: 0 using two benchmark data sets obtained from a public-domain
E 60 - Average of 5 individual classifiers repository.
g From the experiments, it is obvious that multiple classifiers
< sob | T Multiple classifier system (Voting) are able to enhance the performance of individual classifiers.
— — Multiple classifier system (Bayesian) Among the three decision combination algorithms, the BKS
40 - . ) approach demonstrated the best performance. Nevertheless,
wl T Multiple classfler system (BKS) it should be noted that approximations, according to [42],

have been made in the Bayesian approach, and this, in turn,

20 ! ! () L A might compromise the performance. A comprehensive Bayesian
1000 2000 3000 4000 5000 formalism would be able to take dependency between classifiers
No. of Input Samples into account when combining predictions (good discussion

on Bayesian methods for neural network can be found in
Fig. 8. Overall classification accuracy rates against increasing number of inﬁﬁp])-
samples from the individual classifiers as well as the voting, Bayesian and BKSApart from investigation into the performance of different
multiple classifier systems. (@, = 0.0, ()7, = 0.9. decision combination algorithms, applicability of various input
pattern representation methods and learning strategies have also
Two sets of dual-mode learning experiments were conducteelen examined in the two benchmark problems. In contrast to
with p, = 0.0 andp, = 0.9. Five classifiers were initially the usual ensemble approach that codes an input pattern into a
trained using 1000 samples, each with a different ordering sifhgle vector and assigns to one classifier, the modular approach
data, and then tested using the remaining samples. The clasg@regates the input pattern into groups of related attributes and
fication accuracy was calculated with a 1000-sample movirigeds each group to an independent classifier. A decision is then
window as in the online learning experiments. Fig. 8 depicts tieade by combining the predictions from all group classifiers.
overall accuracy rates against increasing number of input sartewever, the use of this modular approach is strongly depen-
ples from the individual classifiers, as well as the MCSs. A fedent on the correlation between the input attributes. If a strong
observations can be made from the following results: correlation exists, the modular approach will not only diminish
. . : - ) the overall performance, but will also induce unnecessary com-
1) performance improves with a high vigilance value; o :
L lexity in the resulting system.
2) all three MCSs perform better than the individual classh . ; .
o In view of the incremental learning property of PFAM, exper-
fiers; iments have been conducted to study the applicability of MCSs
3) BKS approach performs the best, followed by the i I i . ical
Bayesian approach and then the vating method ih offline as well as online environments. One practical strategy
' is to employ a dual-mode learning approach where each PFAM
Nevertheless, wittp, = 0.9, both the Bayesian and votingclassifier is first trained, offline, with a set of input samples with
methods achieve virtually the same performance. different orderings. This approach helps establish a knowledge
This dual-mode learning strategy also achieved results whichse in the classifier before online, incremental learning is en-
are comparable with the offline results (Table V). However, orgaged. Very encouraging results have been achieved which are
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comparable with, if not superior to, many reported results. By25] J. Yang and V. Honavar, “Experiments with the Cascade-Correlation al-
combining the predictions from a committee of PFAM classi-

fiers,

can be realized to undertake online pattern-classification prohz7;

lems.
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an autonomously learning system with improved accurac
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